文章编号: 0258-7025(2009)08-1963-05

微透镜集成大功率垂直腔面发射激光器

王贞福^{1,2} 宁永强¹ 张 岩^{1,2} 史晶晶^{1,2} 李 特^{1,2} 崔锦江^{1,2} 刘光裕^{1,2} 张 星^{1,2} 秦 莉¹ 孙艳芳¹ 刘 云¹ 王立军¹ (¹中国科学院长春光学精密机械与物理研究所激发态物理重点实验室,吉林长春 130033) ²中国科学院研究生院,北京 100039

摘要为了改善大功率垂直腔面发射激光器(VCSEL)的模式特性,在 GaAs 衬底上采用限制扩散湿法刻蚀技术制作出了不同曲率半径的微透镜,与 P 型和 N 型分布式布拉格反射镜(DBR)构成复合腔结构,可以对腔内模式进行选择。有源区采用新型的发射波长为 980 nm 的 InGaAs/GaAs 应变量子阱,包括 9 对 In_{0.2} Ga_{0.8} As (6 nm)/Ga_{0.18} As_{0.82} P(8 nm)量子阱,有源区直径 100 μm,微透镜直径 300 μm,曲率半径 959.81 μm,表面粗糙度 13 nm。室温下,器件连续输出功率大于180 mW,阈值电流 200 mA,远场发散角半角宽度分别为 7.8°和 8.4°,并且与没有微透镜的垂直腔面发射激光器输出特性进行了比较。

关键词 激光器;垂直腔面发射激光器;微透镜;横模;远场发散角

中图分类号 TN 248.4 文献标识码 A doi: 10.3788/CJL20093608.1963

High-Power and Microlens-Integrated Vertical Cavity Surface Emitting Lasers

Wang Zhenfu^{1,2} Ning Yongqiang¹ Zhang Yan^{1,2} Shi Jingjing^{1,2} Li Te^{1,2} Cui Jinjiang^{1,2} Liu Guangyu^{1,2} Zhang Xing^{1,2} Qin Li¹ Sun Yanfang¹ Liu Yun¹ Wang Lijun¹ ¹ Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China

 2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Abstract In order to improve the characteristics of the transverse mode of high-power vertical cavity surface emitting lasers (VCSELs), microlens are used to realize high power and single transverse mode by forming a compound cavity with P-DBR and N-DBR of the VCSEL chip. Convex microlens is fabricated by one-step diffusion-limited wet-etching techniques on GaAs substrate. A novel material structure with nine $In_{0.2} Ga_{0.8} As$ (6 nm)/ $Ga_{0.18} As_{0.82} P(8 nm)$ quantum wells is employed to emit the wavelength of 980 nm. The diameter of the active layer is about 100 μ m, and the nominal diameter of the microlens is 300 μ m. The curvature radius of 959.81 μ m and the RMS of the whole microlens surface of 13 nm are obtained. The maximum output power is 180 mW in continuous-wave (CW) operation at room temperature. The far-field FWHM divergence angle θ_{\parallel} and θ_{\perp} of the single device at a current of 1500 mA is 7.8°, 8.4°, respectively. The operation performance between microlens-integrated VCSEL and ordinary VCSEL is also discussed.

Key words lasers; vertical cavity surface emitting lasers; microlens; transverse mode; far-field divergence angle

1 引 言

垂直腔面发射激光器(VCSEL)的有源区很薄, 腔长很短,极易实现单纵模工作。但是垂直腔面发 射激光器的有源区和出光窗口具有一定的横向宽度,因此会有一些横模被激发出来。有源区载流子和多种横模的光子的相互作用导致的空间烧孔效

作者简介:王贞福(1982—),男,博士研究生,主要从事半导体光电子器件等方面的研究。E-mail: wzf2718@126.com

导师简介:宁永强(1965—),男,研究员,博士生导师,主要从事新型半导体激光器及其相关物理等方面的研究。

E-mail: ningyq@ciomp.ac.cn(通信联系人)

收稿日期: 2009-04-21; 收到修改稿日期: 2009-05-18

基金项目:国家自然科学基金(60636020,60676034,60476029,60577003,60876036,60706007)资助项目。

光

激

中

应,是产生多横模的主要原因,因而通常的大口径垂 直腔面发射激光器大多为多横模单纵模出射^[1]。然 而,单模 VCSEL 对于许多领域有着重要的应用^[2], 像自由空间的光互联^[3]、激光打印、医疗诊断、机载 光探测和测距系统(Lidar)都需要 VCSEL 光束具 有高功率单模、低的远场发散角等特点。

传统的氧化限制型 VCSEL 只有在有源区直径 很小(≤4 µm)的情况下才能获得单横模激射,然而 太小的有源区会限制光功率的输出,而且高的电流 密度会减少器件的寿命。控制垂直腔面发射激光器 模式输出的方法很多,包括表面浮雕法^[4]、空间滤波 法^[5]、反谐振反射法^[6]、外腔反馈法^[7]以及利用光子 晶体的缺陷^[8]等,其中利用微透镜作为稳定模式输 出已被广泛应用于 VCSEL 单管器件和二维阵列。 利用微透镜作为输出耦合镜,构成复合腔结构,可以 对 VCSEL 腔内模式进行选择实现单横模激射,并 且该结构紧凑,易于二维集成,克服了光抽运和电抽 运 VCSEL 体积庞大,难以阵列集成,长期工作可靠 性差的缺点^[9]。Si-Hyun Park 等^[10]采用微透镜集 成 VCSEL 结构,直接在 P 面出光口上制作 InGaP 微透镜,获得单横模输出功率大于 3 mW。G. A. Keeler 等^[11]在玻璃衬底上沉积 SiO₂-Si₃N₄ 形成凸 起的微透镜,连续输出10mW,光束质量因子1.22。 Ihab Kardosh 等^[12]在 GaAs 衬底上沉积 SiO₂-TiO₂ 形成微透镜,获得连续输出功率 15 mW,光束质量 因子约为1.58。可见微透镜作为稳定 VCSEL 单横 模输出是一种有效手段。

目前,用于制作微透镜的方法有离子交换法^[13]、光敏玻璃热成形法^[14]、光刻胶热熔法^[15]、聚 焦离子束刻蚀与沉积法^[16]等。这些方法都需要复 杂的工艺过程或者需要昂贵的实验设备,实验周期 长,制作成本高,而且复杂的工艺过程会为垂直腔面 发射激光器的制作带来许多不利因素。

本文采用限制扩散湿法刻蚀的方法,可以直接 在垂直腔面发射激光器的衬底上制备微透镜,操作 简单,不需要复杂的实验设备和冗长的实验周期,可 以得到表面形貌较好的微透镜,而且具有很好的可 重复性,更重要的是用该方法制备的微透镜集成垂 直腔面发射激光器可以二维集成,这样制作的二维 阵列会具有更好的光束质量。

2 器件结构与制作过程

VCSEL 外延片是由金属氧化物化学气相沉积 法(MOCVD)生长而成的,发射波长为 980 nm,有

源区采用新型的 InGaAs/GaAs 应变量子阱结构, 包括 3 个周期,每个周期有 3 个 In_{0.2} Ga_{0.8} As (6 nm)/Ga_{0.18}As_{0.82}P(8 nm)量子阱,有源区置于 2 倍波长的 Al_{0.2}Ga_{0.8}As 空间层之间,采用 GaAsP 为 阻挡层,与传统的 GaAs 相比,GaAsP 具有更宽的 带隙,对有源区的载流子具有更好的限制作用,有利 于提高输出功率。P型分布式布拉格反射镜(P-DBR)是由 30 对 Al_{0.9}Ga_{0.1}As /GaAs 组成,提供 99.9%的反射率,为减少电压降和吸收损耗,P 面采 用 C 掺杂(1×10¹⁸/cm³)。N 型分布式布拉格反射 镜(N-DBR)是由 25 对 Al_{0.9}Ga_{0.1}As /GaAs 组成,

采用 Si 掺杂(2×10¹⁸/cm³),提供 99.3%的反射率, 与通常的 28 对 N-DBR 相比,减少 N – DBR 的对数 有利于提高输出功率,同时阈值电流也会有所增加。 30 nm厚的 AlAs 层置于 P – DBR 和空间层之间,通 过选择性氧化,产生折射率低,绝缘性好的 Al_xO_y 提供电学限制和光学限制^[17]。如图 1 所示,P 面电 极采用 Ti-Au-Pt-Au,N 面电极采用 Ge-Au-Ni-Au, 通过合金之后提供良好的欧姆接触^[18]。

图 1 980 nm 微透镜集成底发射垂直腔面发射 激光器结构示意图。微透镜直径为 300 μm

Fig. 1 Schematic diagram of microlens-integrated 980 nm bottom-emitting oxide-confined VCSEL. The nominal diameter of GaAs microlens is 300 μm

在 GaAs 衬底表面溅射 100 nm 厚 SiO₂ 做掩 膜,通过光刻腐蚀在 SiO₂ 表面刻蚀出不同直径的圆 孔,浸没在一定比例的氢溴酸双氧水配成的腐蚀液 中。由于 Br₂ 在掩膜边缘处碰撞的几率比较小,因 而 Br₂ 在边缘处扩散得比较快,中间扩散得比较慢, 所以圆孔外围的反应要快于圆孔中央的反应,控制 好腐蚀时间和腐蚀液的配比度可以腐蚀出不同曲率 半径的凸透镜^[19]。如图 2 所示,腐蚀过程周围环境 对微透镜的表面形貌影响很大,任何的空气扰动会 破环 Br₂ 分子扩散运动,影响表面形貌的形成,因而 保持周围环境稳定和温度稳定是形成完好的表面形 镜的表面形貌进行了测试,微透镜的曲率半径为 959.81 μm,焦距 369.16 μm,表面粗糙度均方根 (RMS)为13 nm。

- 图 2 限制扩散湿法刻蚀制作微透镜的示意图
- Fig. 2 Schematic diagram of microlens by using diffusion-limited wet etching

3 实验结果与讨论

室温下,出光窗口为 300 μ m 的微透镜集成垂直 腔面发射激光器的 *P-I*,*V-I* 曲线如图 3 所示,由图 3 可以看出,在注入电流 1500 mA下,最高连续输出功 率大于 180 mW,没有出现热饱和。阈值电流 200 mA,斜率效率 0.14 W/A,转换效率 4.4%,串联 电阻 0.43 Ω 。光谱特性如图 4 所示,峰值波长 978.1 nm,光谱的半峰全宽为 0.8 nm。远场发散角 半角宽度 $\theta_{//}$ (lateral divergence angle) 和 θ_{\perp} (vertical divergence angle) 分别为 7.8°, 8.4°,如图 5 所示。

图 3 窗口直径为 300 μm 的微透镜集成垂直腔面发射 激光器的 P-I,V-I 曲线

Fig. 3 P-I, V-I characteristics of microlens-integrated

VCSEL with an emitting window aperture of 300 μm 实验还对具有相同芯片结构没有微透镜耦合的 VCSEL 做了比较,实验发现没有微透镜的 VCSEL 阈值电流为 300 mA,连续输出功率 240 mW,这是 由于微透镜的反馈作用使得激光器的阈值电流会减 少,同时由于微透镜的表面会带来额外的散射损耗, 使得功率会有所减少,但是有微透镜的 VCSEL 的 光束质量要远远好于没有微透镜的 VCSEL,同时高

图 4 微透镜集成垂直腔面发射激光器的光谱特性 Fig. 4 Spectrum characteristics of microlens-integrated VCSEL

图 5 微透镜集成垂直腔面发射激光器的远场发散角 Fig. 5 Far-field distribution of microlens-integrated VCSEL at a current of 1500 mA

图 6 没有 阈 透镜 果 成 垂 且 腔 固 反 射 激 尤 希 的 远 场 分 布 特 性

阶模式对应较大的远场发散角,低阶模式对应较小 的远场发散角,如图 6 所示,没有微透镜的 VCSEL 远场发散角半角宽度为 17.1°,16.2°,这是因为有 源区激射的光通过微透镜时会有一部分光被反馈到 腔内,利用复合腔的选模特性可以抑制高阶模式的 激射,有利于低阶模式激射^[20]。

图 7 为在驱动电流 1500 mA下,相同口径有无 微透镜的 VCSEL 远场三维分布,有微透镜的器件 远场分布为良好的高斯分布,光斑为圆形对称结构,

光

而没有微透镜的器件为环形光斑,这是因为在相同 电流注入下,高阶模式占据有源区的周围,由于微透 镜的反馈作用,这些高阶模式被反馈到有源区,又因 为复合腔具有选模功能,只有满足光场分布与增益 分布相匹配的模式才能激射,选择合适的复合腔结构可以抑制高阶模式的激射,有利于有源区中心位 置低阶模式的激射,从而起到稳定模式输出的作用。

图 7 有微透镜和没有微透镜的 VCSEL 远场光斑比较 Fig. 7 Comparison of far-field distribution of microlens-integrated and conventional VCSEL

4 结 论

利用限制扩散湿法刻蚀的方法成功研制出微透 镜集成垂直腔面发射激光器,室温下器件最高连续 输出功率大于 180 mW,阈值电流 200 mA,斜率效 率 0.14 W /A,转换效率 4.4%,串联电阻 0.43 Ω , 峰值波长 978.1 nm,光谱的半峰全宽为 0.8 nm。 远场发散角分别为 7.8°, 8.4°,并且与没有微透镜 的 VCSEL 的输出特性进行了比较。

参考文献

- 1 Li Te, Ning Yongqiang, Sun Yanfang *et al.*. Beam quality of 980 nm high power vertical-cavity surface-emitting laser[J]. *Chinese* J. Lasers, 2007, 34(5): 641~645
 - 李 特,宁永强,孙艳芳等. 980 nm 高功率 VCSEL 的光束质量 [J]. 中国激光, 2007.**34**(5): 641~645
- 2 Fumio Koyama. New functions of VCSEL-based optical devices [J]. Chin. Opt. Lett., 2008, 6(10): 755~762
- 3 Wang Jinfei, Hu Guijun, Qu Renhui et al.. Multimode fiber communication system based on mode group diversity multiplexing[J]. Chinese J. Lasers, 2008, 35(12): 1966~1969 王晋飞,胡贵军,曲仁慧等. 多模光纤模式群分集复用系统[J]. 中国激光,2008, 35(12): 1966~1969
- 4 H. Martinsson, J. A. Vukusic, M. Grabberr *et al.*. Transverse mode selection in large-area oxide-confined vertical-cavity surfaceemitting lasers using a shallow surface relief[J]. *IEEE Photon. Technol. Lett.*, 1999, 11(12): 1536~1538
- 5 Michael C. Y. Huang, Ye Zhou, Connie J. Chang-Hasnain, Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers[J]. *Appl. Phys. Lett.*, 2008, **92** (17): 171108
- 6 Delai Zhou, L. J. Mawst. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting laser[J]. *IEEE J. Quantum Electron.*, 2002, **38**(12): 1599~ 1606
- 7 G. E. Giudice, D. V. Kuksenkov, L. G. De Peralta *et al.*. Single-mode operation from an external cavity controlled verticalcavity surface-emitting laser[J]. *IEEE Photon. Technol. Lett.*,

1999, **11**(12): 1545~1547

- 8 Dae Sung Song, Se Heon Kim, Hong Gyu Park et al.. Singlefundamental-mode photonic-crystal vertical-cavity surfaceemitting lasers [J]. Appl. Phys. Lett., 2002, 80 (21): 3901~3903
- 9 Yanrong Song, Peng Zhang, Xinping Zhang et al.. Intracavity frequency-doubled green vertical external cavity surface emitting laser[J]. Chin. Opt. Lett., 2008, 6(4): 271~273
- 10 Si Hyun Park, Yeonsang Park, Hyejin Kim et al.. Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation[J]. Appl. Phys. Lett., 2002, 80(2): 183~185
- 11 G. A. Keeler, D. K. Serkland, K. M. Geib *et al.*, Single transverse mode operation of electrically pumped verticalexternal-cavity surface-emitting lasers with micromirrors [J]. *IEEE. Photon. Technol. Lett.*, 2005, **17**(3): 522~524
- 12 Ihab Kardosh, Frank Demaria, Fernando Rinaldi *et al.*. High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors[J]. *IEEE. Photon. Technol. Lett.*, 2008, **20**(24): 2084~2086
- 13 M. Oikawa, K Iga, T Sanada. Array of distributed index planar micro-lenses prepared from ion exchange technique [J]. *Jpn. J. Appl. Phys*, 1981, 48(1): 49~50
- 14 N. F. Borrelli, D. L. Morse, R. H. Bellman et al.. Photolytic technique for producing microlenses in photosensitive glass [J]. *Appl. Opt.*, 1985, 24(16): 2520~2525
- 15 Z. D. Popovic, R. A. Sprague, G. A. Neville Technique for monolithic fabrication of microlens array[J]. Appl. Opt., 1998, 27(4): 1281~1284
- 16 Y. Fu, B. K. A. Ngoi. Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology [J]. *Optical Engineering*, 2001, 40(4): 511~516
- 17 Hao Yongqin, Liu Wenli, Zhong Jingchang *et al.*. A new process in fabrication of vertical-cavity surface emitting laser[J]. *Chinese J. Lasers*, 2006, **33**(4): 443~446
 郝永芹,刘文莉,钟景昌等. 垂直腔面发射激光器制作新工艺[J]. 中国激光,2006, **33**(4): 443~446
- 18 Zhao Lumin, Wang Qing, Yan Changling *et al.*. 980 nm high power vertical cavity surface emitting laser [J]. *Chinese J. Lasers*, 2004, **31**(2): 142~144 赵路民,王 青,晏长岭等. 980 nm 高功率垂直腔面发射激光器 [J]. 中国激光,2004, **31**(2): 142~144
- 19 Yu Sik Kim, Jaehoon Kim, Joong Seon Choe et al..

Semiconductor microlenses fabricated by one-step wet etching[J]. IEEE Photon. Technol. Lett., 2000, **12**(5): 507~509

20 Si Hyun Park, Yeonsang Park, Heonsu Jeon. Theory of the

mode stabilization mechanism in concave-micro mirror-capped vertical-cavity surface-emitting laser[J]. J. Appl. Phys., 2003, 94: 1312~1317

150 µW 小型化超短脉冲太赫兹辐射源

超短脉冲太赫兹(THz)辐射源在太赫兹波技术领域一 直占有重要地位。随着太赫兹波技术在物理、化学、生物医 学、成像、传感以及毒品检测等众多科研和技术领域应用的 深入,对高效、高功率、小型化超短脉冲太赫兹辐射源的研究 已逐步成为研究热点。其中应用光纤飞秒激光技术是最行 之有效的研究方法,使用光子晶体光纤飞秒激光放大系统作 为激发源,采用块状 GaP 非线性晶体作为 THz 发射器,通过 优化超短脉冲 THz 辐射的产生技术,入射在晶体上的抽运功 率在 17 W的情况下,获得平均功率为 150 μW 的超短脉冲 THz 辐射输出。该结果比G. Chang等报道的采用普通光纤飞 秒激光放大系统激发的相似 THz 辐射源的输出提高了 23 倍。

实验装置如图 1 所示,其中飞秒激光光源为自行研制的 全光子晶体光纤飞秒激光放大系统,激光种子源与放大级增 益介质均为掺 Yb 偏振型大模场面积光子晶体光纤,其单模 场面积为 660 µm²。利用大功率 LD 反向抽运,采用透射光 栅对进行色散补偿。实验中飞秒激光系统最大使用功率为 20.8 W,最窄脉冲宽度 66 fs,工作波长 1.04 µm,脉冲重复 频率 52 MHz,以 1/2 波片和偏振棱镜构成抽运功率调节器 实现抽运功率的控制。THz 发射器为<110>切割的块状 GaP晶体,厚度分别为1mm和3 mm。使用4f型太赫兹时

图 1 系统结构示意图 Fig. 1 Experimental setup

域频谱系统(THz-TDS)监测 THz 信号,用 Golay Cell 功率 探测器(GC-1 P,俄罗斯 TYDEX 公司)测量超短 THz 辐射 脉冲序列的平均功率,并使用平行放置的 3 mm 厚的高阻硅 片组作为衰减器将输出的 THz 波衰减到功率探测器的量程 范围之内。整套系统操作简单,结构紧凑,实现了 THz 源的 小型化。

实验中,首先利用 THz 时域频谱技术优化系统运转,测 得的时域信号如图 2 插图(a)所示,频谱覆盖 0.1~3.0 THz,如图 2 插图(b)所示;再使用 Golay Cell 测量了 THz 输 出的平均功率依抽运功率的变化规律,图 2 所示为激发两种 不同厚度的 GaP 晶体所获得的结果,由 3 mm 晶体产生的最 高输出达到 150 μW。

图 2 THz 平均功率与抽运功率关系

- Fig. 2 The relationship between output THz average power and pump power (the inset shows the THz temporal waveform and spectrum)
 - 刘 丰 宋有建 邢岐荣 胡明列 王昌雷 柴 路 王清月

(天津大学精密仪器与光电子工程学院超快激光研究室,

太赫兹中心,光电信息技术科学教育部重点实验室,天津 300072) 基金项目:国家 973 计划(2006CB806002,2007CB310408)、国 家 863 计划(2007AA03Z477)、国家自然科学基金(60578037, 60838004,60678012)、中俄自然基金合作项目(0711120198)、天津市 科技支撑计划重点项目(8ZCKFZC28000)、高等学校博士学科点专 项科研基金(200800560026)、全国优秀博士学位论文作者专项资金 (2007B34)和教育部新世纪人才计划(07-0597)资助课题。